Identification and analysis of a gene that is essential for morphogenesis and prespore cell differentiation in Dictyostelium.
نویسندگان
چکیده
We have identified a gene (PslA) that is expressed throughout Dictyostelium development and encodes a novel protein that is required for proper aggregation and subsequent cell-type differentiation and morphogenesis. pslA null (pslA-) cells produce large aggregation streams under conditions in which wild-type cells form discrete aggregates. Tips form along the stream, elongate to produce a finger, and eventually form a terminal structure that lacks a true sorus (spore head). More than half of the cells remain as a mass at the base of the developing fingers. The primary defect in the pslA- strain is the inability to induce prespore cell differentiation. Analyses of gene expression show a complete lack of prespore-specific gene expression and no mature spores are produced. In chimeras with wild-type cells, pslA- cells form the prestalk domain and normal, properly proportioned fruiting bodies can be produced. This indicates that pslA- cells are able to interact with wild-type cells and regulate patterning, even though pslA- cells are unable to express prespore cell-type-specific genes, do not participate in prespore cell differentiation and do not produce pslA- spores in the chimeras. While pslA- cells produce mature, vacuolated stalk cells during multicellular development, pslA- cells are unable to do so in vitro in response to exogenous DIF (a morphogen required for prestalk and stalk cell differentiation). These results indicate that pslA- cells exhibit a defect in the prestalk/stalk cell pathways under these experimental conditions. Our results suggest that PslA's primary function is to regulate prespore cell determination very early in the prespore pathway via a cell-autonomous mechanism, possibly at the time of the initial prestalk/prespore cell-fate decision. Indirect immunofluorescence of myc-tagged PslA localizes the protein to the nucleus, suggesting that PslA may function to control the prespore pathway at the level of transcription.
منابع مشابه
Modelling cell movement, cell differentiation, cell sorting and proportion regulation in Dictyostelium discoideum aggregations.
Understanding the mechanisms that control tissue morphogenesis and homeostasis is a central goal not only in developmental biology but also has great relevance for our understanding of various diseases, including cancer. A model organism that is widely used to study the control of tissue morphogenesis and proportioning is the Dictyostelium discoideum. While there are mathematical models describ...
متن کاملControl of cellular differentiation by temperature in the cellular slime mould Dictyostelium discoideum.
The effects of low temperature on morphogenesis and cellular differentiation of Dictyostelium discoideum were examined. During incubation at 5 degrees C, the vegetative and preaggregation cells never developed, but cell masses at the aggregation or slug stage developed to form hemispherical, or dumbbell-shaped multicellular structures. By staining with FITC-antispore IgG, the structures formed ...
متن کاملThe Dictyostelium MAP kinase ERK2 regulates multiple, independent developmental pathways.
We showed previously that the MAP kinase ERK2 is essential for aggregation. erk2 null cells lack cAMP stimulation of adenylyl cyclase and thus cannot relay the cAMP chemotactic signal, although the cells chemotax to cAMP (Segall et al. 1995). In this paper we have examined the role of ERK2 in controlling developmental gene expression and morphogenesis during the multicellular stages, making use...
متن کاملcAMP-dependent protein kinase differentially regulates prestalk and prespore differentiation during Dictyostelium development.
We and others have previously shown that cAMP-dependent protein kinase (PKA) activity is essential for aggregation, induction of prespore gene expression and multicellular development in Dictyostelium. In this manuscript, we further examine this regulatory role. We have overexpressed the Dictyostelium PKA catalytic subunit (PKAcat) in specific cell types during the multicellular stages, using p...
متن کاملA ubiquitin-conjugating enzyme is essential for developmental transitions in Dictyostelium.
We have identified a developmentally essential gene, UbcB, by insertional mutagenesis. The encoded protein (UBC1) shows very high amino acid sequence identity to ubiquitin-conjugating enzymes from other organisms, suggesting that UBC1 is involved in protein ubiquitination and possibly degradation during Dictyostelium development. Consistent with the homology of the UBC1 protein to UBCs, the dev...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Development
دوره 125 14 شماره
صفحات -
تاریخ انتشار 1998